


# P.7 Mathematics class work Notes Week one(3/June/2020)

#### TOPIC: NUMERATION SYSTEM AND PLACE VALUES. SUBTOPIC: CHANGING FROM A NON DECIMAL TO A NON DECIMAL BASE.

**Note:** Changing from a non decimal to a non decimal base, we express the given numeral into base ten then express it to the required base.



Examples.

1. Change  $43_{\text{five}}$  to base seven.

43<sub>five</sub> to base ten first.

$$\begin{array}{rcl} 4^{1}3^{0}{}_{\rm five} &=& (4x5^{1}) + \\ &=& (3x5^{0}) \\ && (4x5) + (3x1) \\ &=& 20 + 3 \end{array}$$

# ACTIVITY.

- 1. Change  $101_{two}$  to base three.
- 2. Convert  $35_{six}$  to base five.
- 3. Change  $413_{\text{five}}$  to a senary base.
- 4. Convert  $18_{nine}$  to base three.
- 5. Change  $34_{five}$  to base two.
- 6. Convert 26<sub>seven</sub> to base four

#### TOPIC: NUMERATION SYSTEM AND PLACE VALUES. SUBTOPIC: FINDING THE MISSING BASE USED.

1. Find the value of n given that  $32_n = 17_{ten.}$ 

```
\begin{array}{rcl} (3xn^1) + & = & (1x10^1) + \\ (2xn^0) & & (7x10^0) \\ (3xn) + (2x1) & = & (1x10) + (7x1) \\ 3n & + 2 & = & 10 & + & 7 \\ 3n & + 2 & = & 17 \end{array}
```

Then change  $23_{ten}$  to base seven.

| В | NO | В |  |
|---|----|---|--|
| 7 | 23 | 2 |  |
| 7 | 3  | 3 |  |
|   | 0  |   |  |

 $43_{\text{five}} = 32_{\text{seven.}}$ 

| <u>n</u>   | = base five. |            |
|------------|--------------|------------|
| n          | =            | 5          |
| 13         |              | 3⁄         |
| <u>3'n</u> | =            | <u>1⁄5</u> |
| 3n         | =            | 15         |
| 3n + 2 – 2 | =            | 17 – 2     |

$$(1xk^{1}) + = (1x2^{3}) + (0x2^{2}) + (1x2^{1}) + (0x2^{0})$$

$$(4xk^{0})$$

$$(1xk) + 4x1) = (1x2x2x2) + (0x2x2) + (1x2) + (0x1)$$

$$k + 4 = 8 + 0 + 2 + 0$$

$$k + 4 = 10$$

$$k + 4 = 10 - 4$$

$$k = 6$$

$$\underline{k} = \underline{base six.}$$

**3.** Given that  $100_r = 4_{ten}$ . Find the value of r.

$$(1xr^{2}) + (0xr^{1}) + (0xr^{0}) = (4x100)$$

$$(1xrxr) + (0xr) + (0x1) =$$

$$(4x1)r^{2} + 0 + 0 =$$

$$4$$

$$\sqrt{r^{2}} = \sqrt{4}$$

$$r = 2$$

$$r = base two$$

**4.** Given that  $k^2 = 24_{six}$ . Find the value of k.

$$\begin{array}{rcl} \mathsf{K}^2 &=& (2\mathsf{x}6^1) + (\\ 4\mathsf{x}6^0) \, \mathsf{K}^2 &=& (2\mathsf{x}6) + \\ (4\mathsf{x}1) \, \mathsf{K}^2 &=& (2\mathsf{x}6) + \\ & & (4\mathsf{x}1) \, \mathsf{K}^2 &=& 12 + \\ & & & 4 \\ & & \mathsf{K}^2 &=& 16 \\ & & & \mathsf{K}^2 &=& \sqrt{16} \\ & & & \mathsf{K} &=& 4 \\ & & \mathsf{K} &=& 4 \\ \hline \mathbf{K} &=& \mathbf{base four} \end{array}$$

**5.** Given that  $2P^2 = 33$  five. Solve for p.

$$2p = (3x5^{1}) + (3x5^{0})$$

$$2p = (3x5) + (3x1)$$

$$2p = 15 + 3$$

$$2p = 18$$

$$2p = 18$$

$$2p = 18$$

$$2p = \frac{18}{7}$$

$$2 = 9$$

$$\sqrt{P^{2}} = \sqrt{9}$$

$$P = 3$$

#### ACTIVITY.

1. Find the value of the unknown in the following.

a) 
$$43_k = 23_{ter}$$

b)  $21_p = 10101t_{wo}$ .

- c)  $15_{six} = 21_r$ . d)  $201_n = 34_{five}$ . Given that  $r2 = 221_{three}$ . Find the value of r. Find the value of h if  $2h^2 = 44_{seven}$ 2.
- 3.

# TOPIC: NUMERATION SYSTEM AND PLACE VALUES. SUBTOPIC: ADDITION OF BASES.

1. Add: 1. Add:  $\begin{array}{c}
1 & 1 \\
2 & 4 & 3_{five} \\
+ & 2 & 1 & 0_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 3_{five} \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 0 \\$ 

2. Work out:  $1011_{two} + 111_{two} + 1001_{two}$ .

1011<sub>two</sub> 1001<sub>two</sub> + 111<sub>two</sub> 11011<sub>two</sub>

# ACTIVITY.

Work out the following additions.

1. 203<sub>four</sub> +

- $112_{four}$ . 2.  $101_{two}$
- + 111<sub>two</sub>.
- 3. 43<sub>five</sub> + 121<sub>five</sub>.
- 4. 303<sub>five</sub> + 202<sub>five</sub>
- 5.  $101_{two} + 11_{two} + 1_{two}$ .

#### TOPIC: NUMERATION SYSTEM AND PLACE VALUES. SUBTOPIC: SUBTRACTION OF BASES.

1. Subtract: 1011<sub>two</sub>

<u>- 11<sub>two</sub></u> 1000<sub>two-</sub>

2. Subtract 23<sub>five</sub> from 342<sub>five</sub>.

| 3 4 2 <sub>five</sub>     | 2 is less than 3 so we get one five and break it, then add to the 2. |
|---------------------------|----------------------------------------------------------------------|
| - 23 <sub>five</sub>      | 5 + 2 = 7 then subtract 3 from 7                                     |
| <u>314<sub>five</sub></u> | 7 - 3 = 4                                                            |
|                           | When we get one five from a 4, we remain with 3. So 3 –              |
|                           | 2 = 1. And 3 take away nothing remains 3.                            |

# ACTIVITY.

Work out the following numbers.

- 1. Subtract:  $1010_{two} 100_{two}$ .
- 2. Subtract: 202<sub>four</sub> -13<sub>four</sub>.
- 3. Subtract:  $101_{two}$  from  $111_{two}$ .
- 4. Subtract: 234<sub>five</sub> from 404<sub>five</sub>.
- 5. Subtract: 66ten from 111ten.