

P5 MATHEMATICS

WEEK FIVE August

LESSON ONE

EXPRESSING MIXED NUMBERS AS IMPROPER FRACTIONS.

Example I

Example II

Express $4^2/_3$ as an improper fraction

Express $5^{1}/_{4}$ as an improper fraction.

$4^2/_3 = \underline{W \times D} + \underline{N}$	$5^{1}/_{4} = \underline{W \times D} + \underline{N}$
D	D
= <u>4 x 3 + 2</u>	= <u>5 x 4 + 1</u>
3	4
= <u>12 + 2</u>	= 20 + 1
3	4
$= \frac{14}{3}$	$= \frac{21}{4}$

EXERCISE

Express each of these fractions as improper fractions.

1. 1 1/2	4. 2 ⁷ / ₈
2. 3 ¹ / ₁₀	5. $5^{1}/_{6}$
3. 10 ³ / ₅	6. $4^{3}/_{7}$

LESSON TWO

REDUCING FRACTIONS

i) To reduce a fraction is to simplify it to its simplest terms.

i) This is done by dividing the numerator and denominator by their GCF.

Example I	Example II		
<i>Reduce</i> ¹² / ₂₄ <i>to its simplest terms.</i>	Reduce $^{18}/_{30}$ to its simplest form		
Using Prime factorization	Using Prime Factorization		
2 12 24			

				_	 80 ÷ 6 =	-
2	4÷ 1	.2 2		1	8 ÷ 6 =	3
_1	2 ÷ :	12 = <u>1</u>			=	= 6
=	12				GCF =	2 X 3
GCF =2	2 X 2	X3				
					3	5
		1 4	2	3	9	15
	3	3	6 2	2	18	30
	2	6	12			

3

EXERCISE

1. $\frac{2}{4}$ 2. $\frac{9}{10}$ 3. $\frac{20}{30}$	5. $\frac{8}{12}$ 6. $\frac{5}{10}$
3. $\frac{20}{30}$ 4. $\frac{30}{90}$	7. $\frac{12}{18}$

LESSON THREE

ORDERING FRACTIONS

1. To order fractions is to arrange fractions in ascending or descending order.

2. Ascending order means from smallest to biggest/ largest.

3. Descending means from biggest to smallest.

4. We can use the LCM to determine the size of the fraction in natural numbers.

Example I

Arrange ¹/₃, ¹/₂, ¹/₄ in ascending order.

LCM of 3, 2 and 4 = 12 (Find LCM by prime factorisation using the ladder)

¹ / ₃ x 12 ²	¹ / ₂ , x 12 ⁻⁶	¹ / ₄ x 12 ³
1 x 2 = 2	1 x 6 = 6	1 x 3 = 3

Ascending order = $\frac{1}{4}, \frac{1}{3}, \frac{1}{2}$.

Example II

Arrange $^{7}/_{12}$, $^{3}/_{8}$, $^{5}/_{8}$ in descending order.

LCM of 12 and 8 = 24 (Find LCM by prime factorisation using the ladder)

⁷ / ₁₂ x 24 - ²	³ / ₈ , x 24 - ³	⁵ / ₈ x 24 - ³
7 x 2 = 14	3 x 3 = 9	5 x 3 = 15

Descending order = $\frac{5}{8}, \frac{7}{12}, \frac{3}{8}$

EXERCISE

Arrange the following fractions as instructed in brackets

1. ${}^{3}/_{4}$, ${}^{2}/_{3}$, ${}^{1}/_{2}$. (ascending)	4. ⁵ / ₆ , ⁴ / ₅ ,	$^{7}/_{10,}^{2}/_{3}$. (descending)
2. $\frac{5}{6}$, $\frac{5}{8}$, $\frac{5}{12}$. (ascending)	5. ³ / ₄ , ² / ₃ ,	$^{5}/_{6}$. (descending order
3. $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{6}$. (descending)	6. ⁵ / ₆ , ⁴ / ₅ ,	$^{7}/_{10,}^{2}/_{3}$. (descending)

LESSON FOUR

ADDITION OF FRACTIONS

To add fractions, find the LCM of the denominators of the fractions.

Example I

Add: $\frac{1}{4} + \frac{1}{2}$ (Find LCM of 2 and 4 by prime factorisation using the ladder)

LCM =4

$$= (4 \div 4 \times 1) + (4 \div 2 \times 1)$$

$$= \frac{1 \times 1 + 2 \times 1}{4}$$

$$= \frac{3}{4}$$

Example II

Add: $\frac{5}{6} + \frac{3}{8}$ (Find LCM of 6 and 8 by prime factorisation using the ladder)

$$\frac{20+9}{24} = \frac{29}{24}$$
 (Change to a mixed number)
$$= \frac{1^5}{24}$$

EXERCISE

Add the following:

1. $\frac{1}{3} + \frac{1}{2}$ 3. $\frac{7}{10} + \frac{1}{20}$ 2. $\frac{2}{3} + \frac{1}{2}$ 4. $\frac{1}{5} + \frac{1}{2}$

5. 2/7 + 3/4

6.
$$^{2}/_{9}^{+1}/_{6}$$

LESSON FIVE

ADDITION OF MIXED NUMBERS

Example I

Example II

Add: $6^{2}/_{3} + \frac{1}{_{6}}$

 $1^{1}/_{3} + 2^{3}/_{5}$

 $1+2 + \frac{1}{3} + \frac{3}{5}$ LCM of 3 and 5=15

3 + $\frac{5+9}{15}$ LCM of 3 and 6=6

 $3\frac{14}{15}$

EXERCISE

1. $5^{1}/_{4} + 4^{2}/_{3}$ 2. $3^{3}/_{7} + 4$ 3. $2^{1}/_{5} + 1^{2}/_{3}$ 4. $4^{1}/_{5} + 3^{1}/_{2}$ 5. $2^{3}/_{4} + 4^{1}/_{8}$ 6. $3^{5}/_{9} + 5^{1}/_{3}$