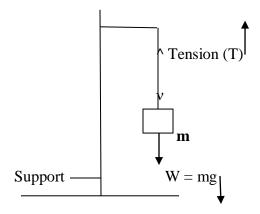
Calculations on motion of objects in a lift

- A man of mass 65kg is accelerated upwards from the ground floor to the fifth floor in a lift at a rate of 2ms⁻².
 - a) Draw a diagram to show the forces acting in the motion system.
 - b) Indicate the direction of motion, with acceleration of the lift.
 - c) Calculate:
 - i. The resultant force producing the acceleration in (b) above.
 - ii. The value of reaction force, \mathbf{R} on the man in the lift.
 - d) Compare:
 - i. The value of reaction force, **R** that the man feels as his weight to the value of his actual (normal) weight, **W**.
 - ii. What do you conclude from your comparison above in terms of his weight?
- 2) A girl of mass 80kg stands on a weighing scale on the floor of the lift. Calculate:
 - **a.** The resultant force on the girl
 - **b.** The reaction in Newtons on the weighing scale if the lift moves:

i.Upwards with an acceleration of **2ms**⁻².

ii.Down wards with an acceleration of 2ms⁻²

iii.Upwards with a constant velocity of **6ms**⁻¹.


c. Compare your answers in (**b**) above and make a conclusion about what happens to the weight of a person in each case of motion in a lift.

TENSION IN A STRING

Tension is the force which pulls the ends of an object apart when it is applied. It's a stretching force.

Tension acts towards a fixed point of support when the body is at rest or moving at a constant velocity.

Illustration: consider a mass, m suspended on a support using inextensible string.

The mass, **m** is suspended on a support using an inextensible string. The force of gravity acts on the mass downwards. The tension force results in the string since it is tied to a rigid support. Two forces act on the mass. i.e. its weight, $\mathbf{W} = \mathbf{mg}$ and the tension force, **T** (in the string). When the mass is at rest, its acceleration $\mathbf{a} = \mathbf{0} \ \mathbf{ms}^{-2}$.

Now, using Newton's second law of motion,

T- mg = ma T = m x a + mg T = m (a + g), but a=0 T = m (0 + g) = mgT = mg

If the tension force causes the object to accelerate upwards with a ms-2, then;

 $\mathbf{T} - \mathbf{mg} = \mathbf{ma}$ (resultant force)

T = ma + mg

OR T = m(a + g)

So, in this case the tension in the string is greater than when the mass is at rest.

If the object accelerates downwards with acceleration, $\mathbf{a} \mathbf{ms}^{-2}$ but still attached to the string, then;

mg - T = ma	(Newton's 2 nd law of motion)
T = mg - ma	(reduction in Tension force)
Or $T = m (g - a)$	

If the mass moves with a steady/constant speed, i.e. $\mathbf{a} = \mathbf{0} \text{ ms}^{-2}$, then,

T- mg = ma (Newton's 2^{nd} law of motion)

 $\mathbf{T-mg}=\mathbf{0}$

T = mg

Calculations involving Tension force (T)

- A bail of cotton of mass 100g is pulled upwards by a 5N force. Calculate;
 - a) Weight of the bail
 - b) Resultant force on the bail
 - c) The upward acceleration

- A crane lifter raises a container of mass 400kg suspended on inextensible string.
 - a) Draw a diagram and indicate the forces acting on the mass of the container.
 - b) If the force in the string is 4800. Find the acceleration of the mass as it rises.
 - c) Calculate the value of force in the string which makes the mass of the container to move with a constant speed.
 - Aspiring balance carrying a mass of 4kg is suspended from a ceiling of a lift. Calculate the reading on the spring balance when the;
 - i. Lift is ascending with an acceleration of 0.4ms-2
 - ii. Lift is descending with an acceleration of 0.4ms-2
 - iii. Lift is ascending with uniform velocity.

END