ST. AGNES JUNIOR SCHOOL

P.6 Mathematics

TOPIC / UNIT 4: PATTERNS AND SEQUENCES:

Lesson one

Consecutive numbers / natural numbers / integers Subtopic: Content: Find the consecutive counting numbers The sum of 3 consecutive whole numbers is 36. What are these numbers Example: Let the 1st number be n. 2^{nd} number = n + 1 3^{rd} number = n + 2 But: n + (n + 1) + (n + 2) = 36n + n + 1 + n + 2 = 36n + n + n + 1 + 2 = 363n + 3 = 363n + 3 - 3 = 36 - 3<u>3n</u> = <u>33</u> 3 = 3 <u>.: n = 11</u> $\begin{array}{c|c} 1^{st} \text{ number } = n \\ and \ n = 11 \end{array} & \begin{array}{c} 2^{nd} \text{ number } (n \ + \ 1) \\ = 11 \ + \ 1 \end{array} & \begin{array}{c} 3^{rd} \text{ number is } (n \ + \ 2) \\ = 11 \ + \ 2 \end{array}$ = 11 + 2 = 12 = 13

Activity

Find the consecutive counting numbers whose sum is;

a) 27	d) 54
b) 33	e) 69
c) 45	f) 93

Lesson two

- **Subtopic:** Consecutive numbers
- **Content:** Find the consecutive EVEN numbers
- **Note:** Even numbers increase in intervals of 2
- **Example:** The sum of three consecutive <u>Even</u> numbers is 24. List down the 3 numbers Let the 1^{st} number by (x)

$$2^{nd} \text{ number is } (x + 2)$$

$$3^{rd} \text{ number is } (x + 4)$$

$$x + (x + 2) + (x + 4) = 24$$

$$x + x + 2 + x + 4 = 24$$

$$x + x + 2 + 4 = 24$$

$$3x + 6 = 24$$

$$3x + 6 - 6 = 24 - 6$$

$$\frac{3x}{3} = \frac{18}{3}$$

$$X = 6$$

These EVEN Numbers are:

1 st is n,	2 nd	3 rd
= 6	X + 2	x + 4
	= 6 + 2	= 6 + 4
	= 8	= 10

Activity

List down the consecutive even whose sum;

- a) 36
- b) 48
- c) 54
- d) 72
- e) 84
- f) 96

Lesson three

- **Subtopic:** Consecutive numbers
- **Content:** Find the consecutive ODD numbers
- **Note:** Odd numbers also increase in intervals of 2
- **Example:** The sum of three consecutive Odd numbers is 39. List down the 3 numbers L of the 1st number by (x)

<u>X</u>	=	<u>11</u>
3		3
<u>3x</u>	=	<u>33</u>
3x + 6 – 6	=	39 – 6
3x + 6	=	39
x + x + x + 2 + 4	=	39
x + x + 2 + x + 4	=	39
x + (x + 2) + (x + 4)	=	39
3 rd numbe	r is (x	+ 4)
2 nd numbe	r is (x	+ 2)
Let the 1 st numbe	r dy (x)

These Odd Numbers are:

e Odd Numbers are:		
1 st is n,	2 nd	3 rd
= 11	X + 2	x + 4
	= 11 + 2	= 11 + 4
	= 13	= 15

Activity

List down the consecutive even whose sum;

- a) 21
- b) 33
- c) 45
- d) 63
- e) 81
- f) 99

Lesson four

- Subtopic: Factors
- **Content:** Listing factors
 - The common factors (CF)
 - The HCF / GCF
 - The LCF

NOTE:

- 1. A factor is a number that divides another number completely. i.e. without leaving a remainder.
- 2. Factors are numbers multiplied to get multiples
- **NB:** The smallest factor of every number is **1** while the biggest factor of every number is the number its self.
- **Examples:** (i) How many factors do 18 have?

F $_{18}$ = {1, 2, 3, 6, 9, 18} ∴ 18 has 6 factors

- (ii) Work out the sum of all the F_{20} $F_{20} = \{1, 2, 4, 5, 10, 20\}$ Sum = 1 + 2 + 4 + 5 + 10 + 20= 42
- (iii) Work out the GCF of 12 and 18 $F_{12} = \{1, 2, 3, 4, 6, 12\}$ $F_{18} = \{1, 2, 3, 6, 9, 18\}$ $CF = \{1, 2, 3, 6\}$ GCF = 6
- N.B The LCF is always 1

Activity

- 1. List down all the factors of 24
- 2. How many factors do 14 have?
- 3. Find the GCF of the following numbers.
 - a) 10 and 20
 - b) 14 and 21
 - c) 12 and 24
 - d) 8 and 16

- **Subtopic:** Prime factorisation
- Content: Using (a) Multiplication
 - (b) Subscript method
 - (c) Powers/ exponents
 - Find number prime factorised.

NOTE:

1. Prime factorising is dividing a given number completely using only prime factors

2. Prime factor are the numbers with only two factor i.e 1 and the number its self. **Prime factors include;** {2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...}

Examples: (i)	Find the prime factors of 60.
---------------	-------------------------------

Pf 60 are (a) 2 x 2 x 3 x 5 in multiplication form

(b) $\{2_1, 2_2, 3_1, 5_1\}$ in set notation or subscript form

(c) $2^2 \times 3^1 \times 5^1$ in multiplication or power form

NB. Subscripts are like position i.e 1^{st} **2**, 2^{nd} **2**, 1^{st} **3** and 1^{st} **5**

Activity

Prime factorise the following numbers and express your answers as instructed in the brackets

- a) 12 (in multiplication form)
- b) 18 (in multiplication form)
- c) 24 (in subscript form)
- d) 30 (in set notation)
- e) 40 (in power form)
- f) 64 (in power form)