## **P.5 MATHEMATICS**

## LESSON ONE WEEK FOUR

#### TOPIC / UNIT 4: PATTERNS AND SEQUENCES: SUBTOPIC: FINDING GCF BY PRIME FACTORIZATION

- 1. To find the GCF of a given pair of numbers, prime factorisation is applied.
- 2. To prime factorise, remember always to use only common prime numbers
- 3. A ladder can be used to find the GCF of a pair of given numbers.
- 4. Prime factorise the given numbers together and multiply the common prime factors to get the GCF.

3

## Example1

Find the GCF of 12 and 18.

| CF | NO | NO |           |
|----|----|----|-----------|
| 2  | 12 | 18 | GCF = 2 x |
| 3  | 6  | 9  | = 6       |
|    | 2  | 3  |           |

## Activity.

Find the GCF of the following pairs of numbers

- a) 8 and 20
- b) 18 and 27
- c) 6 and 24
- d) 24 and 36
- e) 12 and 28

# LESSON TWO

# SUBTOPIC: FINDING LCM USING PRIME FACTORISATION

- 1. To find the LCM of a given pair of numbers, prime factorisation is applied.
- 2. To prime factorise, remember always to use prime numbers eg. 2, 3, 5, 7, 11, 13, ...
- 3. A ladder can be used to find the LCM of a pair of given numbers.
- 4. Prime factorise the given numbers together and multiply the prime factors



### Example I

Find the LCM of 12 and 18.

Prime factorise 12 and 18 together.

| PF | NO | NO | PF | NO | NO |
|----|----|----|----|----|----|
| 2  | 12 | 18 | 2  | 4  | 3  |
| 2  | 6  | 9  | 2  | 2  | 3  |
| 3  | 3  | 9  | 3  | 1  | 3  |
| 3  | 1  | 3  |    | 1  | 1  |
|    | 1  | 1  |    |    |    |

| LCM = $(2 \times 2) \times (3 \times 3)$ |   |    |   | x 3) | LCM = (2 |         |  |
|------------------------------------------|---|----|---|------|----------|---------|--|
|                                          | = | 4  | Х | 9    |          | = 4 x 3 |  |
| LCM                                      | = | 36 |   |      | LCM      | = 12    |  |

LCM of 12 and 18 = 36

LCM of 4 and 3 = 12

#### ACTIVITY

Prime factorise to find the LCM of the following pairs of numbers.

| 1. 4 and 12  | 4. 14 and 28 |
|--------------|--------------|
| 2. 8 and 16  | 5. 15 and 30 |
| 3. 12 and 15 | 6. 30 and 40 |

### LESSON THREE

#### **TOPIC / UNIT 4: PATTERNS AND SEQUENCES:** SUBTOPIC: SQUARE NUMBERS

- 1. Square numbers are numbers got by multiplying two equal numbers. E.g.  $2 \times 2 = 4$ 4 is a square number.
- 2. Square of a number can be written by raising the number by power 2. Eq. Square of  $3 = 3^2$ , Square of  $a = a^2$

# Example II

Find the LCM of 4 and 3.

Prime factorise 4 and 3 together.

| PF | NO | NO |
|----|----|----|
| 2  | 4  | 3  |
| 2  | 2  | 3  |
| 3  | 1  | 3  |
|    | 1  | 1  |
|    |    |    |

## Example I

What is the square of 5?

$$5^2 = 5 \times 5$$

= 25

The square of 5 is 25

## ACTIVITY *Find the squares of the following numbers.*

- 1. The square of 6
- 2. The square of 8
- 3. The square of 11
- 4. The square of 13
- 5. The square of 21
- 6. The square of 25

## **LESSON FOUR**

## TOPIC / UNIT 4: PATTERNS AND SEQUENCES: SUBTOPIC: SEQUENCES

## Examples



## Example II

What is the square of 12?

 $12^2 = 12 \times 12$ 

= 144

The square of 12 is 144

## ACTIVITY

Find the next numbers in the sequences below.

- a) 2, 6, 10, 14, \_\_\_\_\_
- b) 25, 22, 19, 16, \_\_\_\_\_
- c) 2, 3, 5, 7, \_\_\_\_\_
- d) 81, 64, 49, 36, \_\_\_\_\_
- e) 14, 20, 26, 32, \_\_\_\_\_

# LESSON FIVE

# **TOPIC: FRACTIONS**

- 1. A fraction is part of a whole.
- 2. A fraction is written with two main parts.
  - a) The numerator
  - b) The denominator.
- 3. The top part of a fraction is the numerator and the bottom part is the denominator.
  - Eg  $\frac{1}{2}$  1 is the numerator and 2 is the denominator.

# **TYPES OF FRACTIONS**

There are three main types of fractions.

# a) Proper fractions

These are fractions whose numerator is smaller than the denominator.

e.g  $\frac{1}{2}$  ,  $\frac{3}{4}$  ,  $\frac{5}{6}$ 

# b) Improper fractions

These are fractions whose numerator is bigger than the denominator.

e.g. <sup>5</sup>/<sub>4</sub>, <sup>3</sup>/<sub>2</sub>, <sup>19</sup>/<sub>5</sub>

# c) Mixed number

These are fractions that have both whole numbers and fractions.

e.g. 1<sup>5</sup>/<sub>6</sub>, 3<sup>5</sup>/<sub>6</sub>, 12<sup>1</sup>/<sub>2</sub>

### **EXPRESSING IMPROPER FRACTIONS AS MIXED NUMBER**

## Example I

### Example II

Express  $^{9}/_{5}$  as a mixed number.Express  $^{30}/_{7}$  as a mixed number. $9 \div 5 = 1$  remainder 4 $30 \div 7 = 4$  remainder 2

$$= \mathbf{1}^4/_5 = \mathbf{4}^2/_7$$

## ACTIVITY.

## Express the following as mixed numbers.

| 1. | <sup>3</sup> / <sub>2</sub>  | 4. | <sup>15</sup> / <sub>7</sub> |
|----|------------------------------|----|------------------------------|
| 2. | <sup>11</sup> / <sub>3</sub> | 5. | <sup>50</sup> /8             |
| 3. | <sup>17</sup> / <sub>4</sub> | 6. | <sup>24</sup> /7             |