456/1
Mathematics
Paper 1
July/August 2018
$21 ⁄ 2$ hours

UGANDA CERTIFICATE OF EDUCATION MATHEMATICS
PAPER 1
2 HOURS 30 MINUTES

INSTRUCTIONS TO CANDIDATES

- Answer all questions in Section A and any five from Section B
- Any additional question(s) will not be marked
- All necessary calculations must be done on the same page as the rest of the answer .Therefore no paper should be provided for rough work.
- Graph papers will be provided.
- Silent, non programmable scientific calculators may be used.

SECTION A: (40 MARKS)

1. Without using tables or calculators, evaluate $21.5 \times 48.6+51.4 \times 21.5$ (3 marks)
2. Given that $x * y=x^{2}+y$ determine;
(i) The value of $-3 * 5$
(ii) The value of y when $2 * y=7$
3. Solve the equation: $\frac{y+2}{3}-\frac{y-1}{4}=\frac{y+3}{2}$
4. Given $P^{-1}=\left(\begin{array}{cc}5 & -2 \\ -7 & 3\end{array}\right)$ determine the matrix P.
5. Given that $\tan \theta=\frac{-3}{4}$ and that $0^{\circ}<\theta<180^{\circ}$, without using a calculator, evaluate $\operatorname{Sin} \theta-\operatorname{Cos} \theta$ (5 marks)
6. Solve the equation $x^{2}-2 x=15$.
7. Given the numbers $0,6,7,3,6$ and 5 determine their;
(i) Mean
(ii) Median
8. Below is a circle with centre \mathbf{O}. A A B is as tangent at A and angle $\mathbf{O T A}=50^{\circ}$

Determine value of angles;

(i) TAB

(ii) ABT
9. Point $\mathbf{A}(\mathbf{2}, \mathbf{2})$ is rotated through $\mathbf{9 0}^{\mathbf{0}}$ using centre (1,0). Determine the coordinates of A^{\prime}, the image of \mathbf{A} after the rotation
10. A box has balls of the same size in colours of yellow, green and blue. The probability of picking a yellow ball is $1 / 4$ and that of a green one is $\frac{2}{3}$. What is the probability of picking a blue one.

SECTION B: (60 MARKS)

11. The table shows marks scored in a Mathematics test and their respective cumulative frequency.

MARKS	CF
$20-29$	2
$30-39$	7
$40-49$	15
$50-59$	37
$60-69$	38
$70-79$	40
$80-89$	

(a) State ;
(i) the modal frequency
(ii) class interval
(b) Calculate the mean mark
(c) Draw a histogram and use it to estimate the modal mark.
(12 marks)
12. Triangle $\mathbf{A B C}$ with vertices $\mathbf{A}(2,2), \mathbf{B}(\mathbf{5}, \mathbf{2})$ and $\mathbf{C}(1,5)$ is given a translation $\binom{2}{-1}$ to triangle $\mathbf{A}^{1} \mathbf{B}^{1} \mathbf{C}^{1}$. Then $\mathbf{A}^{1} \mathbf{B}^{1} \mathbf{C}^{\mathbf{1}}$ is reflected in line $y=-1$ to triangle $\mathbf{A}^{11} \mathbf{B}^{11} \mathbf{C}^{11}$.
(a) Using a graph paper and on the same axes draw the triangles $\mathbf{A B C}, \mathbf{A}^{1} \mathbf{B}^{1} \mathbf{C}^{1}$ and
$A^{11} B^{11} C^{11}$
(12 marks)
(b) State the coordinates of;
(i) $\quad \mathbf{A}^{1}, \mathbf{B}^{1}$ and $\mathbf{C 1}$
(ii) $\quad \mathbf{A}^{11}, \mathbf{B}^{11}$ and \mathbf{C}^{11}
(12 marks)
13. (a) Using a pencil, ruler and a pair of compasses, construct triangle ABC in which
$\mathbf{A B}=\mathbf{8 c m}$, angle $\mathbf{A}=\mathbf{6 0}{ }^{\circ}$ and angle $\mathbf{C}=\mathbf{4 5}^{\circ}$. Measure length $\mathbf{A C}$.
(b) Construct a circle passing through A,B and C. State its radius.
(c) Calculate the area of triangle ABC
(12 marks)
14. (a) Given the matrices $A=\left(\begin{array}{cc}3 & 4 \\ 4 & -1\end{array}\right)$ and $B i\left(\begin{array}{cc}1 & 2 \\ -3 & 1\end{array}\right)$. Determine
(i) $\quad \mathrm{A}^{2}+\mathrm{B}$
(ii) $\quad 2 B-A$
(6 marks)
(b) Use matrices to solve $\begin{gathered}2 x+3 y=1 \\ x-y=3\end{gathered}$
(6 marks)
15. (a) Solve the inequality $2 x+1<7-x$ hence state the greatest integral value of $2 x+1<7-x$
(b) By shading the unwanted region, show the inequalities

$$
y \leq x+1
$$

$y>1$
$2 y+x \leq 8$
16. (a) Draw a graph of $y=2 x^{2}+x-6$ for $-3 \leq x \leq 3$
(b) state the minimum value of $2 x^{2}+x-6$
(c) Use the graph to solve the equation:
(i) $2 x^{2}+x-6=0$
(ii) $x^{2}-x-2=0$
(12 marks)
17. (a) Given that $x^{2}-y^{2}=65 \wedge x-y=5$ determine the value of x and y
(b) The length of a rectangle is 3 cm less than twice its width, and the area is $35 \mathrm{~cm}^{2}$. Calculate the;
(i) width
(ii) perimeter of the rectangle

