P.7 MATHEMATICS

LESSON ONE WEEK FOUR

TOPIC:FRACTIONSSUB TOPIC:USE OF BODMAS TO SIMPLIFY MIXED FRACTION

CONTENT: Combined operations

Brackets Of Division Multiplication Addition Subtraction

Examples:

1. Simplify

$\frac{2}{2} \text{ of } \frac{3}{4} - \frac{1}{3}$ $\frac{2^{1}}{3} \times \frac{3^{-1}}{4} - \frac{1}{3}$	2.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\frac{1}{2} - \frac{1}{2}$ $\frac{3}{3} - 2$		$\frac{5}{6} - \frac{3}{4} x \frac{2}{5} \frac{1}{2} \frac{1}{5} - \frac{1}{2} = \frac{5}{5} - \frac{3}{5}$
$=\frac{1}{6}$	=	$\frac{2}{2} = \frac{1}{3}$

ACTIVITY. Workout the following

1. $\frac{1}{2} \times \frac{1}{4} + \frac{1}{3}$ 2. $\frac{4}{7}$ of $\frac{1}{2} + \frac{4}{9}$ 3. $\frac{9}{5} + \frac{1}{3} - \frac{1}{2} \times \frac{3}{5}$

4.
$$\frac{2}{5} - \frac{1}{4} + \frac{6}{9}$$

5. $\frac{4}{10} - \frac{1}{2} + \frac{1}{2}$

LESSON TWO SUB TOPIC: CHANGING FRACTIONS TO DECIMALS

Examples:

Changing the following fractions to decimals:

1. <u>5</u> <u>0.625</u>	2. <u>1</u> <u>0.3333</u>
$8 = 8 \sqrt{5}$	$3 = 3 \sqrt{1}$
<u>- 0</u>	<u>- 0</u>
50	10
<u>-48</u>	<u>- 9</u>
20	10
<u>-16</u>	9
40-	10
<u>-40</u>	<u>- 9</u>
00	1
∴ <u>5</u> = 0.625	∴ <u>1</u> = 0.333
8	3

ACTIVITY:

Change the following fractions to decimals.

1. 1/4	4. ² / ₃
2. ¹ / ₈	5. ² / ₉
3. ³ / ₄	6. ⁴ / ₆

LESSON THREE SUB TOPIC: CHANGING DECIMALS TO FRACTIONS Examples:

Change the following decimals to common fractions

1. $0.25 = \frac{-25}{100} 1$

$$0.25 = \frac{1}{4}$$

2. $0.125 = \frac{125}{1000} 1$

 $0.125 = \frac{1}{8}$

Changing recurring decimals to rational numbers

Examples: Changing the following decimals to rational numbers:

1. 0.333 Let the fraction be v		- Represent the fraction with a letter.
	Y = 0.333(i) 10 x y = 0.333 x 10 10y = 3.333 (ii)	 This is equation one Multiply both sides by 10 because one digit is repeated This is equation two
	10y = 3.333 -y = 0.333 9y = 3	- Subtract equation one from equation two
	$\frac{^{1}\underline{9}y}{_{-9}} = \frac{\underline{3}^{-1}}{_{-9}}$	- Divide both sides by 9 and reduce the fraction by 3
	$Y = {}^{1}/{}_{3}$	

2. 0.4545	- Represent the fraction with a letter.
Let the fraction be m m = 0.4545 (i) $100 \times m = 0.4545 \times 100$	 This is equation one Multiply both sides by 100 because two digits are repeated
100m = 45.45 (II)	- This is equation two
100m = 45.45 <u>- m = 0.4545</u> 99m = 45	- Subtract equation one from equation two
<u>99m</u> = <u>45</u> 99 99	 Divide both sides by 99 and reduce the fraction by 9
$m = \frac{5}{11}$	

0.1666.....
Let the fraction be a

$$a = 0.1666...(i)$$

 $10 \times a = 0.1666... \times 10$
 $10a = 1.6666....(ii)$
 $10a = 1.6666....(ii)$
 $10a = 1.6666....(ii)$
 $10a = 1.6666....$
 $\frac{-a}{9a} = \frac{-0.1666....}{9a}$
 $\frac{-0.1666....}{9a} = \frac{1.5}{9}$
 $\frac{-2}{9} = \frac{1.5}{9}$
 $a = \frac{15}{10} \times \frac{1}{9}$
 $a = \frac{15}{10} \times \frac{1}{9}$
 $a = \frac{15}{90}$
 $a = \frac{1}{6}$
- Reduce the fraction by 15
 $a = \frac{1}{6}$

ACTIVITY:

3.

Change the following decimals to common fractions

1. 0.12	4. 0.666
2. 0.25	5. 0.2121
3. 0.36	6. 0.1444

LESSON FOUR

SUB TOPIC: APPLICATION OF FRACTIONS IN REAL LIFE SITUATION

CONTENT: Word problems

Examples:

1. Tap A can fill the tank in 6 minutes and tap B can fill the same tank in 3 minutes. How long will both taps take to fill the tank if they are opened at the same time? Method 1: NOTE: Taps A and B can fill these fractions in one minute Tap A Tap B $\frac{1}{6}$ Tap B

Tap A and B **when combined** = $\frac{1}{6} + \frac{1}{3} = \frac{1+2}{6} = \frac{3}{6} = \frac{1}{2}$

This means,
$$\frac{1}{2}$$
 tank = 1 minute
1 tank = $(1 \div \frac{1}{2})$ minutes
= 1 x 2
1
= 2 minutes.

Method 2:

Product of the time taken Sum of the time taken

- $= \frac{Tap A x tap B}{Tap A + tap B}$ $= \frac{6 x 3}{6 + 3}$ $= \frac{18^{-2}}{-9}$ = 2 minutes
- 2. Tap A can fill the tank in 6 minutes and tap B can empty the same tank in 8 minutes. How long will it take to fill the tank if both taps are opened at the same time?

Method 1:

NOTE: Taps A and B can fill and empty these fractions in one minute respectively

Tap A and B **when combined** = $\frac{1}{6} - \frac{1}{8} = \frac{4-3}{24} = \frac{1}{24}$

This means,
$$\frac{1}{24}$$
 tank = 1 minute
1 tank = $(1 \div \frac{1}{24})$ minutes
= 1 x 24
1
= 24 minutes.

Method 2:

Product of the time taken Difference of the time taken

 $= \frac{Tap A x tap B}{Tap B - tap A}$ $= \frac{6 x 8}{8 - 6}$ $= \frac{48^{-24}}{-2}$ = 24 minutes

ACTIVITY:

- 1. Tap A can fill the tank in 8 minutes and tap B can fill the same tank in 6 minutes. How long will both taps take to fill the tank if they are opened at the same time?
- 2. Tap A can fill the tank in 9 minutes and tap B can fill the same tank in 3 minutes. How long will both taps take to fill the tank if they are opened at the same time?
- 3. Tap A can fill the tank in 6 minutes and tap B can fill the same tank in 4 minutes. How long will both taps take to fill the tank if they are opened at the same time?
- 4. Tap A can fill the tank in 5 minutes and tap B can empty the same tank in 10 minutes. How long will it take to fill the tank if both taps are opened at the same time?
- 5. Tap A can fill the tank in 4 minutes and tap B can empty the same tank in 6 minutes. How long will it take to fill the tank if both taps are opened at the same time?
- 6. Tap A can fill the tank in 8 minutes and tap B can empty the same tank in 10 minutes. How long will it take to fill the tank if both taps are opened at the same time?

LESSON FIVE

SUB TOPIC: MORE APPLICATION OF FRACTIONS IN REAL LIFE SITUATION

CONTENT: Word problems

Examples:

- 1. Twaha spent $\frac{1}{3}$ of his money on books and $\frac{1}{6}$ of the remainder on transport.
 - (i) What fraction of his money was left?
 - Fraction spent on books ¹/₃
 - Remained fraction: $1 \frac{1}{3} = \frac{3}{3} \frac{1}{3} = \frac{2}{3}$
 - Fraction spent on transport: $\underline{1} \text{ of } \underline{2} = \underline{1} \times \underline{2} \text{ reduce}$ $6 \quad 3 \quad 6 \quad 3$

 $= \frac{1}{9}$ Total fraction spent on transport and books: $\frac{1}{2} + \frac{1}{9}$

$$\frac{3+1}{9} = \frac{4}{9}$$

Remained fraction = $1 - \frac{4}{9} = \frac{9}{9} - \frac{4}{9} = \frac{5}{9}$

(ii) If he was left with shs 15,000= how much did he have at first? Let the total amount be y.
5 of y = sh. 15,000
9

$$\frac{5}{9} \times y = \text{sn. 15,000}$$

$$\frac{5y}{9} = \text{sh. 15,000}$$

$$\frac{5y}{9} = \text{sh. 15,000}$$

$$\frac{19 \times 5y}{9_1} = 15000 \times 9$$

$$\frac{9}{1} \times \frac{3000}{5_1} \times \frac{9}{5_1}$$

$$\frac{15000 \times 9}{5_1} \times \frac{5_1}{5_1}$$

$$Y = 3,000 \times 9$$

$$Y = \text{shs 27,000} =$$

∴ He had sh 27,000 at first

ACTIVITY:

- 1. In a class, $\frac{3}{8}$ of pupils eat matooke, $\frac{4}{15}$ of the remaining pupils eat posho and the rest of the pupils eat rice. If 55 pupils eat rice, how many pupils are in the class?
- 2. In a class of 48 pupils, $\frac{3}{4}$ like Maths, $\frac{2}{3}$ of the remainder like English and the rest like SST. How many pupils like SST?
- 3. Mrs. Okello used her salary as follows: $^{2}/_{5}$ on food, $^{5}/_{9}$ of the remainder on fees, and saved the rest. If she saved sh.240,000;
 - (a) Find the fraction of her salary saved.
 - (b) What is her salary?
- 4. Musana spent $\frac{1}{2}$ of his money on books and $\frac{1}{5}$ of the remainder on transport.
 - (a) What fraction of his money was left?
 - (b) If he was left with sh.15,000, how much money did he have at first?