Plot 48 Muwaire Rd (behind IHK Hospital) P.O.BOX 5337, KAMPALA - UGANDA

Tel: 256783111908

Email: info@stagnes.co.ug <mailto:info@stagnes.co.ug

Website: www.stagnes.co.ug

LESSON ONE P.7 MATHEMATICS TOPIC: OPERATION ON NUMBERS.

SUBTOPIC: LAWS OF INDICES IN MULTIPLICATION.

CONTENT.

For the expression **a**<sup>b</sup>, **a** is the called the **base** and **b** is called **index** or **exponent.** 

# Writing expressions in power form.

a) 
$$2x 2 x 2 x 2 = 2^4$$

b) 
$$3 \times 3 \times 3 \times 5 \times 5 = 3^3 \times 5^2$$

**Note:** The index only tell the number of times the base has been multiplied. It does not multiply.

# Writing expression powers in expanded form.

a) 
$$2^4 = 2 \times 2 \times 2 \times 2$$

b) 
$$5^2 \times 6^3 = (5 \times 5) \times (6 \times 6 \times 6)$$

# Simplifying powers.

a) 
$$2^{4} \times 2^{2} = (2 \times 2 \times 2 \times 2) \times (2 \times 2)$$
  
=  $2 \times 2 \times 2 \times 2 \times 2 \times 2$   
=  $2^{6}$ 

b) 
$$h^2 x h^3 = (h x h) x (h x h x h)$$
  
=  $h x h x h x h x h$   
=  $h^5$ 

**NOTE:** In the above expressions, we note that the index on the answer are simply the sum of the indices of the basses which are multiplied.

Check; 
$$4^3 \times 4^4 = (4 \times 4 \times 4) \times (4 \times 4 \times 4 \times 4)$$
  
=  $4 \times 4 \times 4 \times 4 \times 4 \times 4 \times 4$   
=  $4^7$ 

In short;

$$4^{3} \times 4^{4} = 4^{3+4}$$
  
=  $4^{7}$ 

### **Conclusion:**

When we multiply powers of the same bases, we simply add the indices and maintain the same base as in the examples above.

### **ACTIVITY**

- 1. Express the following in powerform.
  - a) 2 x 2 x 2 x 2 x 2.
  - b) 3 x 3 x 3 x 3 x 3
  - c) y x y x y x y.
- 2. Expand the following.
  - a)  $3^{2}$
  - b) k<sup>5</sup>
  - c) ab<sup>3</sup>
- 3. Simplify the following by expanding the powers.
  - a)  $3^2 \times 3^5$
  - $\dot{p}$   $\dot{p}$   $\dot{p}$   $\dot{p}$
  - c)  $2^4 \times 2^5$
- 4. Simplify the following by using the law of multiplication of indices.
  - a)  $2^5 \times 2^1$
  - b)  $5^2 \times 5^6$
  - c)  $m^2 x m^1 x m^3$

## **LESSON TWO**

TOPIC: OPERATION ON NUMBERS.

SUBTOPIC: LAW OF INDICES INVOLVING DIVISION AND OTHER

OPERATIONS.

**CONTENT:** 

1. simplify; 
$$3^5 \div 3^2$$

$$= \underbrace{3 \times 3 \times 3 \times 3^{1} \times 3^{1}}_{3_{1} \times 3_{1}}$$

$$= \underbrace{3 \times 3 \times 3}_{3} \times 3$$

$$= \underbrace{3^{3}}_{3}$$

**NOTE:** In the above expressions, we note that the index on the answer are simply the difference of the indices of the basses which are multiplied.

**Check:** 
$$3^5 \div 3^2 = 3^{5-2} = \mathbf{3}^3$$

#### Conclusion.

When we divide powers of the same bases, we simply maintain the same base and subtract the exponents.

e.g

1. 2. Simplify: 
$$a^b \div a^d$$
.

$$= \underline{\mathbf{a}^{(b-d)}}$$

### **ACTIVITY.**

1. Simplify the following expressions.

a) 
$$a^3 \div a^1$$
  
b)  $3^5 \div 3^2$   
c)  $2^9 \div 2^6$   
d)  $r^7 \div r^4$   
e)  $t^x \div t^y$   
f)  $m^a \div m^b$ 

#### **LESSON THREE**

**TOPIC: OPERATION ON NUMBERS.** 

**SUBTOPIC:** LAW OF ZERO (0) AS AN INDEX.

**CONTENT:** 

1. Simplify; 
$$3^2 \div 3^2 = \frac{3 \times 3}{3 \times 3} = \frac{1}{1} = 1$$

At the same time;  $3^2 \div 3^2 = 3^{2-2} = 3^0$ 

**NOTE:** Since the same number is giving two different answers, then, any number or expression to the zero power or raised to exponent zero is equal to 1.

2. Simplify: 
$$k^0 \div k^1 = k^{0-1} = k^{-1}$$

At the same time;  $k^0 \div k^1$ . =  $\frac{\mathbf{k}^0}{k^1}$  =  $\frac{\mathbf{1}}{\mathbf{k}^1}$ 

**NOTE:** Since the same number is giving two different answers, then, any expression with a negative exponent is the same as 1 divided by that base with its index without a negative and viceversa.

That is to say,  $k^{-1} = k^{1}$ 

# **Activity:**

- 1. Express the following in a fraction form.
  - a) 2<sup>-2</sup>
  - b) 5<sup>-1</sup>
  - c)  $2^{-3}$

- 2. Write the following in power form.

  - c)  $\frac{1}{10^3}$

- 3. Simplify the following.
- a)  $2^{-2} \times 2$ b)  $2^{0} + (2^{3} \times 2^{-2})$ c)  $10^{4} \div 10^{-2}$

## **LESSON FOUR**

**TOPIC: FRACTIONS.** 

SUBTOPIC: ADDITION AND SUBTRACTION.

**CONTENT:** 

Work out the following

1. 
$$\frac{1}{3} + \frac{1}{2}$$
 LCD = 6

$$= \frac{2+3}{6}$$

2. 
$$1^{3}/_{4} + 1^{5}/_{6}$$

$$=\frac{7}{4}+\frac{11}{6}$$
 LCD = 12

$$= \frac{21 + 22}{12}$$

$$= \frac{43^{3 r 7}}{12_1}$$

$$= 3^{7}/_{12}$$

3. 
$$\underline{3} - \underline{1}$$
 **LCD = 12**

$$= 9 - 4$$

4. 
$$3^5/_6 - 1^4/_5$$

$$= 23 - 9$$
 **LCD = 30**

$$= \frac{115 - 54}{30}$$

$$= \frac{61}{30^{1}}$$

$$= 2^{1}/_{30}$$

# **ACTIVITY:**

# Workout the following:

1. 
$$\frac{1}{3} + \frac{1}{2}$$

$$2. \ 2^{7}/_{10}^{+} \ 1^{1}/_{20}$$

$$3. 3^{1}/_{5} + 2^{1}/_{2}$$

4. 
$$\frac{3}{4} - \frac{2}{5}$$

5. 
$$2^3/_4 - 1^1/_6$$

6. 
$$4^{1}/_{2} - 2^{2}/_{5}$$

## **LESSON FIVE**

## **TOPIC: FRACTIONS.**

## SUBTOPIC: MULTIPLICATION AND DIVISION.

### **CONTENT:**

Work out the following.

1. 
$$^{1}/_{5} \times 3 = ^{1}/_{5} \times ^{3}/_{1}$$

$$= \frac{1 \times 3}{5 \times 1}$$

$$= \frac{3}{5}$$

2. 
$$2 \frac{1}{4} \times 1^{1}/_{5}$$

$$= \frac{9}{4} \times \frac{6}{5}$$

$$= \frac{27}{10}$$

$$= 2^{7}/_{10}$$

3. 
$$^{2}/_{5} \div 2 = ^{2}/_{5} \div ^{2}/_{1}$$

$$= {}^{2}/_{5} \times {}^{1}/_{2}$$

$$=\frac{2^1 \times 1}{5 \times 2_1}$$

4. 
$$1^{3}/_{4} \div 2^{1}/_{2} = \frac{3}{4} \div \frac{5}{2}$$

$$= {}^{3}/_{4} \times {}^{2}/_{5}$$

$$= 3 \times 2^{1}$$
  
 $_{2}$   $-4 \times 5$ 

$$=$$
  $^3/_{10}$ 

# Workout the following:

1. 
$$^{1}/_{12}$$
 x  $^{4}/_{6}$ 

2. 
$$1^3/_8$$
 x  $2^2/_7$ 

3. 
$$2^4/_5$$
 x  $3\frac{1}{4}$ 

4. 
$$^{1}/_{6} \div 4$$

5. 
$$2^{1}/_{3} \div 1^{1}/_{2}$$

6. 
$$1^4/_8 \div 5^1/_2$$